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' concentrations in flames and fluorescence quantum efficiencies is readily

performed by measurement of the absolute fluorescence flux reaching a cali-

brated detector as a function of absolute laser flux. A rather simple graphi-
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efficiencies to be measure’ Using these approaches, both flame temperature i
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ABSTRACT OF OBJECTIVES AND ACCOMPLISHMENTS

The research completed during the past four years can be generally
divided into combustion diagnostics and analytical _ s phase
atomic and molccular spectrometry. Significant adv 1ices have been
made in both areas. New and improved techniques to spatially

and temporally measure {lame gas temperatures and species have
been and are being developed. These techniques are all based upon
fluorescence detection. Earlier studies involved the use of a
conventional xenon arc lamp source, whereas recent studies in-
volve the use of a pulsed, high peak power tunable dye lasers.

By measuring the ratio of two fluorescence transitions (in a probe,
such as indium) excited with two different wavelengths, the flame
temperature can be measured with a precision and accuracy better
than 50 K. The two main temperature techniques developed depend
upon either the linear relationship between fluorescence and the
excitation flux on the approach to saturation of the fluorescence
with high excitation fluxes. The measurement of total species
concentrations in flames and fluorescence quantum efficiencies

is readily performed by measurement of the absolute fluorescence
flux reaching a calibrated detector as a function of absolute
laser flux. A rather simple graphical method allows both species
concentration and species fluorcscence quantum efficiencies to

be measured. Using these approaches, both flame temperature

and spccies concentration spatial profiles in a variety of
laboratory flames (acetylene/air, acetylene/N,0, Hp/air, H2/02/Ar,
etc.) have been measured.

Analytical gas phase spectrometric studies have spanned a consider-
able breadth. Theoretical calculations of signal-to-noise ratio
have been made to obtain: approaches to the optimization of spec-
tral measurement systems (linear spectral scan spectrometers

vs sequential slow scan spectrometers vs multiple detector spectro-
meters vs multiplex spectrometers, such as Hadamard Transform

and Fourier Transform); approaches to the optimization of conven-
tional and timec resolution of luminescent components (cw source-

cw detection, pulsed source-gated detection with no time resolu-
tion, and pulsed sourcec-gated detection with time resolution); ~
approaches to the optimization of atomic and molecular analytical
methods (absorption vs cmission vs fluorescence vs Raman and the
use of optogalvanic and optoacoustic detection as well as the use
of non-linear mcthods involving morc than one photon processecs);

and finally approachcs to the optimization and use of image detectors

(vidicons, SIT, ISIT, diodc arrays, etc.) over photomultiplier
detecctors for optical spectroscopy.

Experimental analytical gas phase spectrometric studies have
involved: the developnent and refinement of pulsed (and cw)
tunable dye laser cxcitation of atoms produced by spraying aerosols
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into combustion flames, furnaces, and inductively coupled plasmas;
the development and refinement of an EIMAC xenon arc source-flame-
slew scan atomic fluorescence spectrometer for multielement analy-
sis in real samples, such as engine oils, biological materials,
etc.; the development and refinecment of an innovative source for
atomic fluorescence flame spectrometry, namely the use of an

ICP source which has the benefits of both a continuum source in
terms of wavelength selectivity and line scurces in terms of
intense narrow lince output; and development of chemiluminescence
produced above a furnace (into which samples are necbulized) as an
analytical method. By means of these approaches, considerable
selectivity (near specificity in several cases) is obtained with
detection limits in the picograms per milliliter in most cases

and with precisions (%RSD) of the order of 5% or better. The above
techniques have been applied to the selective measurement of
ultratrace elements in real samples, such as elements in river
water and the selective measurement of trace elements in samples
with complex matrices, such as zinc in copper alloys, trace elements
in orange juice, and trace elements in fly ash.

Other analytical and diagnostical studies performed include: a
comparison of wavelength vs amplitude modulation in optical spectro-
scopy; use of a continuum source, resonance monochromator for

atomic abscrption flame spectrometry; identification of the mole-
cular fluorescence components of unseec=d and seeded flames;
identification of the major spectral noise pcaks in flame emission
and fluorescence spectrometry; a tutorial and definitive report

on additive and multiplicative noises in optical emission and
fluorescence spectrometry; an evalustion of commercial RF-
electrodeless discharge lamps and tie design of an experimental
approach to prepare and evaluate microwave electrodeless discharge
lamps for atomic fluorescence flame spectrometry; and an evaluation
of several multiplex (including the Hadamard specctrometer) approaches
and image devices for multiple element measurements in atomic
emission and fluorescence spectrometry.

In summary, the past 4 years have been fruitful in the devclopment
of combustion diagnostical approaches which will have considerable
use in evaluating large flames (as in combustors) and in develop-

ing selective, sensitive approaches to trace element measurements.
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10. REVIEW OF PROGRESS IN PAST FOUR YEARS
! . Fundamental and Diagnostical Studies

1 Flame Temperature Measurements. Two basic approaches have been
~ developcd and have been or are being evaluated. These approaches
! involve either the measurcment of the fluorescence intensity ratio
of direct line fluorescences (with excitation of the resonance
level via the ground state or via the metastablec state and measur-
ing the resulting direct line fluorescence)in an indium type atom
(In, Ga, T1, Pb, etc.) or the measurement of the ratio of resonance
fluorescence intensity resulting when excitation is via the reson-
. ance absorption process or via the metastable state [refer to the
S APPENDIX]. 1In the former case, the excitation must be on the
. linear portim of the fluorescence intensity vs source intensity
curve and in the latter case; saturation must be approached. 1In
the former case, conventional xenon arc sources can be used whereas
in the latter, a high peak power 1laser must be used since the
saturation spectral irradiances of transitions of atoms in hydro-
carbon flames are very large. In both cases, steady state condi-
tions must be met and the sources must not cause disequilibrium
to occur. By means of these approaches, temperature spatial pro- i
files in a number of laboratory flamcs have been determined. The !
spatial resolution of the former method with an EIMAC xenon arc f
sourse is ~5 mm3_whereas for the latter with a pulsed tunable dye
laser is ~0.2 mm”?. The former technique could, of course, be done
with a pulsed tunable or cw tunable dye laser using neutrgl den-
sity filters to minimize saturation and to obtain 0.2 mm® spatial
resolution. By means of pulsed tunable dye lasers, it is possible
also to cbtain temporal resolution, e.g., temperature values within
a 20-30 ns period 100 times a second.

Species Concentration and Quantum Efficiency Measurements. For a .
2-level atom (or molecule), i1t can be shown that the fluorescence '
radiance, Bp is related to the laser excitation flux, ¢, by

P ST
BF ) nT\ nT

where K. is a constant containing the laser excitation bandpass ,
and area and K; and K; are constants containing known parameters |

as the transition probability, statistical wieght, gas path length .
over which fluorescence is measured, and energy of the emitted P4
photon. By measuring the absolute laser flux, area, and bandpass, '
the fluorescence radiance, and the fluorescence path length, it is
possible to determine both absolute va'ues n; (the total concen-

tration of species) and Y (the quantum efficiency of the fluorescence
process) from the intercept and slope. The former is valuable

in combustor modelling and in absolute analysis and the latter is
valuable in understanding the deactivation processes in gases and -
plasmas. ‘

For a three level (or greater number of levels), the relationship




between Bg, ¢, nt, and Y is quite similar to the 2 level case but

more complex in that now radiationless rate constants must be
known (or negligible) to evaluate ny and Y from the intercept and
slope of the 1 vs 1. Under certain experimental conditions, it
¢
is possible to approximate the terms containing the radiationless
rate constants. Work is currently in progress demonstrating the
potential use of this approach for evaluation of atomic and
molecular species concentrations in laboratory type flamecs. This
approach should also be useful for evaluating the species concen-
trations in combustors; obviously here extremely high peak power
lasers will be needed. Also it is feasible to obtain both spatial
and temporal profiles by using high peak power pulsed, tunable
dye lasers.

During the past 2 years, we have verified the validity of the
above theoretical approach with accurate experimental mecasurements.

During the past year, we have used the pulsed tunable dye laser
approach to spatially profile seeds (Ba, Sr, In, etc.) sprayed
into laboratory flames (H, and C,H;-based flames). Although the
possibility of temporal profiles exists, only initial measurements
have so far been performed.

Signal-to-Noise Ratio Calculations

Signal-to-noise is perhaps the most important of all spectrometric
figures of merit. The signal-to-noise ratio influences the pre-
cision (%RSD) and the detection limit (LOD) of an analytical
measurement. A tutorial approach was recently published in which
additive noises were considered in both emission and luminescence
studies. More recently, a similar approach has been prepared on
multiplicative noises which unfortunately are also intimately
related to the signal level. In these studies, the influence

of sampling time (related to measurement time), instrument response
time or integration time, and modulation with ac detection were
considered with respect to their effects on the SNR. Some rather
apparent but basic conclusions are that all methods are affected
by white noise, that modulation and ac detection is useful only

if the noise source isnot modulated, that additive flicker noises
can be minimized by proper choice of response and sampling times,
that multiplicative flicker noise can be minimized only by use

or an ideal internal standard, and that proportional (whistle)--
noises can be avoided by proper choice of modulation frequency.

In a separate report, wavelength, amplitude, and sample modulation
werc compared. Theoretically sample-blank-standard modulation is
an ideal analytical approach but experimentally it is difficult

to perform with a sufficient modulation frequency to minimize
flicker noises. Thereforc, the best, currcnt experimental approach
is to wavelength modulate to minimize drift (flicker) in the back-
ground (in emission or lumincscnece studies.) Amplitude modula-
tion is the simplest to perform but more susceptible to drift
problems. If white noise is dominant, then the best approach is




to use dc detection.

In other separate studies, multiplex (Hadamard and Fourier Transform
Spectrometers) systems, multiple photodetector systems (dircct
rcaders), sequential slew scan spectrometers, and sequential

linear scan methods werec compared for optical (UV-VIS) spectroscopy
with the following general conclusions: based on SNR calculations,
the multiplex systems will have little use in high or even moder-
ate background cases, such as flame emission, or in molecular
absorption with a continuum background source; the multiple
photodetector spectrometer is the best if one knows which spectral
transitions to measure and if there is little need to even change

to other transitions; the sequential slew scan (computer programmed)
spectrometer is the most versatile and best if 10 or fewer transi-
tions are to be measured or if initial cost is the most critical
factor; the linear sequential scan spectrometer is of little
quantitative use but is a reliable qualitative analysis tool.
Experimental studies by us and others have verified these theore-
tical predications.

In another study, it was shown that (based on SNR) the image
detectors are at best poorer than photomultiplier detectors for
atomic spectrometry. For molecular spectrometry, particularly when
absorption or luminescence detection of gas or liquid chromato-
graphic effluents is used, the image devices are generally superior
to photomultipliers in terms of SNR for a given measurement time
and for a large range of spectral components. Experimental veri-
fication of these theoretical concepts have also been carried out.

Finally, it was shown that a pulsed source-gated detector with
time resoluticn has considerable advantage for luminescence
spectrometry (compared with pulsed-source-gated dctection with no
time resolution, modulated source with avecraging detection, and
cw source with cw detection) if the spectral interferent has a
shorter lifetime than the analyte. If this is not the case then
the more conventional approaches (modulation or cw) are simpler
and at least as good (based,on SNR). Experimental verification
of thesc theoretical concepts have also been carried.

Analytical Gas Phase Spectrometric Studies

Laser Excited Atomic Fluorescence Spectrometry. At this point in
time, it 1s apparcnt that laser excited atomic fluorescence
spectrometry (LEAFS) has very specific and specialized uses, i.e.,
it is not yet a routine analytical tool primarily because of the
high initial cost, the complexity and cost of operating many lasers,
and the applicability of tunable dye lasers to only a single
excitation transition within a short time period (say S min), i.c.,
tunable dye lasers can not yet be slew scanned reliably to a wide
rante of wavelengths. Nevertheless, we have shown that LEAFS

(see Figurc 1) has tremendous potential for certain applications,
namecly where extremely low detection limits are needed and where
high spectral selectivity is nceded. It should be mentioned that
despite the inert atmosphere of the inductively coupled plasma,
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relatively poor limits of detection (see Table I) were obtained
with pulsed dye or cw dyec laser excitation; the high plasma
background noise prevented improvements compared to the flame
atomizer system. In Table IA, we have given detection limits
(LODs) obtained by LEAFS in thc past 4 years. These values rival
or exceed the best LODs reported by others by similar and different
methods. We have also applied LEAFS to the mecasurement of trace
elements in a variety of samples, difficult or impossible to
measure by any other method (see Tables II and III for typical
examples). In addition to the excellent LODs, the linear dynamic
ranges of most elements is 105X to 107X and the $RSD ~5%.

Inductively Coupled Plasma Atomic Flame Fluorescence Spectrometry. In
this study, high concentrations of a given element are sprayed
into the inductively coupled plasma (ICP) which is the source

of excitation for atoms produced via spraying samples into the
flame; atomic fluorescence is measured (see Figure 2). It was
shown theoretically and verified experimental that becausec the

ICP has little self absorption even at concentrations of 20,000
ppm and rare self-reversal (except at hlgh heights), it is an
ideal source for FAFS. The ICP source is intense and the spectral
lines of atoms in the ICP are narrower than for atoms in the

ICP, and so by simply varying thec elemental content of the
solution sprayed into the ICP, one can have a narrow line source
for virtually any element. The major advantage of using an ICP

as a source for FATS rather than spraying the analyte into the ICP
and using the emission of the ICP for analysis is that in the ICP-
FAFS case, the flame acts as a resonance monochromator, minimizing
or eliminating complex spectral interferences arising in an ICP
used for emission analysis. In our case, using 20,000 ppm of
elements in the ICP, the detection limits shown in Table IV re-
sulted. These values could be improved substantially {(by 100X)

by (1) increasing the concentration of element in the ICP,

(2) increasing the time constants on the measurement system, and
(3) increasing the solid angle of collection of ICP rediation
spraying on the flame. This approach also has 2 other unique
advantages, namely: (1) scatter can be corrected by use of a
nearly ICP line, such as Ar, or by making use of self absorption
in the ICP which results in a plateauing of fluorescence intensi-
ties but in a corresponding increase in the scatter; and (2)
measurement of high concentrations of (>1000 ppm) by spraying the

sample into the ICP and a low fixed concentration of analyte into i

the flame which now acts as a resonance monochromator. In Table
V, typical application results of the ICP-FAFS systcm is given.
Detection limits obtained with the ICP-FAFS system were superior
to emission ICP values obtained with our experimental system and
estimated LOD, for the same line. However, the LODs in our case
were gencrdlly 3 to 10X poorer than the best previously given in
the literature for emission ICP.

Multieclement EIMAC Atomic Fluorescence Spectrometry (MEAFS). This
system consisting of an EIMAC xenon arc lamp, a flame, a photo-
multiplier detector, a synchronous photon counter, and a programmed
computrr for wavelength slewing and for data processing. Both
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amplitude and wavelength moderation have been used. Although
| ) the detection limits (see Table I) are not as good as other
b techniques (those mentioned above or atomic absorption), the
! system provided reliable results for real sample analyses for 20
' or fewer elements. The MEAFS system (worth less than $50,000)
1 is easy to use, reliable, and versatile. Limits of detection in
, the sub ppm range were obtained for a large number of elements an
applications were made to trace elements in biological samples,
jet engine oils, standard reference materials, and metals (see
! Tables VI, VII, VIII).

Atomic Spectrometry in Furnances. During the past 4 years, both
3 cw and discrete sampling furnaces were studied. The presence of
o and difficulty of interpretation of the effects of matrix materials
\ on the emission, absorption, or fluorescence signals has led us
! to the following conclusion: furnaces should only be used for
analysis if the sample can not be done by a flame, an ICP, etc.,
i.e., if one is sample limited or sensitivity limited. Atomic
fluorescence detection with tunable dye laser excitation results
in sub-picogram LODs but real sample analyses are plagued with '
interferences difficult to interpret.

More recently, we have evaluated the potential use of chemilumines-
cence of species produced in a cw furnace and reacting with an
oxidant, such as N0, Clz, etc. Molecular chemiluminescence
spectra result which can be used for trace measurements of specics
such as As and Sb in our case. We intend to go to the use of F)
which is a stronger oxidant and should be a useful '"source'" of
excitation for a wide variety of elements.

Other Studies

By means of a continuum source of excitation, a flame for the
sample introduction, and a cw furnace with analyte being contin-
uously introduced and a photomultiplier detector, a highly spec-
tral selective resonance monochromator system was evaluated for
atomic absorption flame spectrometry. The system performed as
expected but was somewhat inferior to a conventional line source
atomic absorption flame spectrometer. Further studies are

S

warranted.

By means of pulsed and cw tunable dye laser excitation, molecular a
fluorescence of native species (Cp, CH, OH, NH, CN) and introduced i
species PO, SrOH, CaOH, CrO, MnO, BaCl, BaOH BaO) have been

observed and identified. Bccause of the low fluorescence inten- 1

sities of the latter species, few analytical capabilities exist;
however, the fluorescence of the native and introduced species

can lead to spectral interferences in a few specialized cases.

The contributions of shot and flicker emission and fluorescence

noises to the total noise as a function of wavelength (200-800 nm)

were also cvaluated for a variety of laboratory flames; the source

of excitation for fluorescence was an EIMAC xenon arc lamp. The

noise sources in pulsed laser excited atomic fluorescence spectro- g
metry are currently being measured.




A theoretical and experimental comparison of optoacoustic and
optogalvanic detection with fluorescence detection is currently
in progress; initial results indicate that optoacoustic detection
is very specialized and has fcw uses for UV-Visible optical
spectrometry of gases. Optogalvanic detection does not seem to
be as sensitive and certainly not as selective as fluorescence
detection.

By means of signal-to-noise ratio expressions, derived for
limiting noise cases, estimated detection limits for atomic ab-
sorption (with line and continuum sources), atomic emission

(flame vs ICP), and atomic fluorescence (flame and ICP atomizers
and line vs continuum sources operating on the linear and satur-
ated regime) was obtained. These calculated detection limits
indicate that atomic emission with an ICP is excellent but has
nearly reached its ultimate sensitivity whercas atomic fluorescence
with laser sources can theoretically be improved by several

orders of magnitude and ultimately exceed the detection power of
the ICP-emission method by several orders of magnitude. Tc esti-
mate solution concentrational detection limits from the gaseous
atom detection limits (in terms of atoms cm-3 in Table IX), one
needs to divide the n-values by #1038, where B; is the free atom
fraction in the hot gas for the analyte atom (Ba = 1 if the species
is 100% atomized). Actually, if the efficiency and rate of intro-
duction of sample solution into the flame varies significantly

from the values used to estimate the 10llfactor, then the “constant"
(10**) must be charged. During the past 4 years, Hadamard spectro-
metry and a modified Michelson spectrometer (interferometer) have
been evaluated experimentally and theoretically and have been

shown to have little use for the UV-Visible Spectral region,
especially for emission, fluorescence, and absorption spectrometry
where either the cell emission and/or the source emission is
intense and spectrally broad. Calculations (SNR) have similarly
shown that the conventional Michelson interferometer, the SISAM
system, or any other modifications will also be of little use in
the UV-Visible region becayse of a great reduction on SNR compared
to more conventional approaches.

Other studies have included: the use of information theory to
evaluate analytical methods; particularly with respect to resolving
power, the measurement of the detection limits of rare earths by

ICP emission; a study of the factors affecting aerosol production

in nebulizer-burners; an evaluation of a selectivity concept

based upon H. Kaiser's approach; a deviation of radiance expressions
for atomic fluorescence assuming continuum excitation and for
molecular fluorescence and phosphorescence assuming narrow line
excitation, a definitive report on why the ratio of the sodium

D; and Dy fluorcscence varies with excitation via the Dj or D
transition; thc use of an atomic absorption inhibition reclease titra-
tion for studying the chemical equilibria and kinetics in flames;
the measurcment of phosphorous via molecular fluorescence of PO in
flames; and several application papers involving the measurement of
lcad in confection wrappers and trace elements in orange juice.




Element

Ag
Al
As
Au
Ba
Be
Bi
Ca
cd
Ce
Co
Cr
Cu
Dy
Er
Eu
Fe
Ga

Ge
Hf
Hg
Ho
In
Li
Lu

Mg

Mo
Na

TABLE IA

DETECTION LIMITS (AQUEOUS SOLUTION) OBTAINED BY LASER EXCITED
ATOMIC FLUORESCENCE SPECTROMETRY LEAFS AND BY SEVERAL OTHER METHODS

Detection Limit (ng/ml)

Line Source1 Continuum Source2 LEAFS3 AAS4
MEAFS

0.1 1. 4. 2.
100. 200. 0.6  20.
100. - - 400.
1,000. 150. - 200."
- - 8. 20.
10. 15, - 2.
10. - 3. 30.
20. - (0.01)7 0.08 2.
0.001 6. 8. 1.5

- - 500.* -

5. 15 (19)7 200.* 15.
50. 1.5 1. 3.
1. 1.5 1. 2.

- - 300.* -

- - 500, * -

- - 20_* -

8. 10. 30. 10.

10. - 0.9 -

- - 800. * -

15,000. - - -
- - - 200.

80. - - -

- - 100.* -

100. 25. 0.2 -
- - 0.5 1.

- - 3,000.* -
1. 0.1  (0.009)7 0.2 0.1

6. 2. 0.4 3.
500, 100. 12. 20.
100,000, -

<0.1 0.5

AEICP5

0.2(4)
0.4

2.
0.01(0.2)
~(0.3)
~(50)
0.0001(4)
0,07** (1)
0.4(20)
0.1**(2)
0.2(4)
0.04**(2)
~-(2)

~(-)

~(1)
0.09(2)
0.6(40)
0.5(8)
~(50)

0.003(20)
0.02(0.5)
0.4(5)
0.02(10)

Optogalvanic6

Laser

2
0.07

0.008




TABLE IA - cont.

Element ) Detzzection Limit (ng/ml) . 0ptoga1vanic6
Line Source Continuum Source LEAFS AAS AEICP Laser
: MEAFS
Nb - - 1,500.% - 0.2(20) -
Nd - - 2,000.% 10. -(10) -
Ni 3. 25. 2. - 0.2(6) 8.
Os - - 150,000, * 15. -(200) -
Pb 10. 50. (1,3)7 13. - 1.%*(20) 0.6
Pd 1,000. loo0. ' - - 2.(40) -
Pr - - 1,000.* - -(30) -
Pt 50,000. 700. - - -(30) -
Rh 3,000. 0 100.* - -(30) -
Ru - - 500.* - -(60) -
Sb - - 50.% 30. -(30) -
Sc - - 10.* - -(1) -
Se 40. - - 250. 1.*%(20) -
Si 600. - - 100. -(10) -
Sm - - 100.* - -(10) -
Sn 30. 150. - 70. 3.(6) 6.
sr 30. 0.9 (0.1)7 0.3 1.  0.003(0.2) -
Tb - - 500.* - -(=) -
Te 5. - - 70. -(20) -
Ti - 200. 2. 80. 0.03(1) 0.2
T1 8. 6. 4. 30. -(75) 0.09
Tm - - 100.* - - -
v 70. 30. 30. 50. 0.06(2) -
Yb - - 10.* - - - .
Zn 0.02 15. - 1. 0.1(2) -
1. The values come from references within J.D. Winefordner, J. Chem. Ed., 55,
72(1978).
2. The values come from D.J. Johnson, F.W. Plankey, and J.D. Winefordner,
Anal. Chem., 46, 1858(1974).
3. Values from S.J. Weeks, H. Haraguchi, and J.D. Winefordner, Anal. Chem.,

50, 360(1978), except those with * which were taken from references listed
in Winefordner, J. Chem. E4., 55, 72(1978).
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TABLE IA - cont.

All values come from Perkin Elmer atomic absorption commercial literature
on the Model 460.

All values from P.W.J.M. Boumans and F.J. de Boer, Spectrochim. Acta, 30B,
309(1975), except for those with ** and those in (). All values in ()

come from commercial literatures from Jarrell-Ash Division, Fisher Scientific
Co., Wlatham, MA for their 3rd generation ICP plasma Atom Comp. All values
with ** come from K.W. Olson, W.J. Haas, and V.A. Fassel, Anal. Chem., 43,
632(1977).

Values taken from J.C. Travis, G.C. Turk, and R.B. Green, Chapter in New
Applications of Laser to Chemistry, ACS Monograph, Vol. 85.

J.N. Bower, J. Bradshaw, J.J. Horvath, and J.D. Winefordner, Anal. Chem.,
submitted. :
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TABLE II

| ’ Determination of Iron in Standard Refcrence Materials
using Laser-Excited Atomic Fluorescence Spectrometry

1 SAMPLE LEAFS ANALYSIS? CERTIFIED VALUEP
E Trace Elements in 78 ng/g 75 + 1 ng/g
; Water (SRM-1643)
o Unalloyed Copper 145 + 6 ug/g 147 + 8 ug/g
i 1 (SRM-394)
i Fly Ash (XRM-1633) 6.2 + 0.2% 6.2 + 0.35C

| 2 + one standard deviation of analytical results, where multiple
L samples were analyzed

b Office of Standard Reference Materials, National Bureau of Standards,

Washington, D.C. 20234

€ Not certified by NBS. 1
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APPENDIX

REPORT

Two flame temperature measurement methods have been developed

and used for several small laboratory flames. The methods are called

' Two Line Linear Fluorescence Method (TLLF) and Two Line Saturation

Fluorescence Method (TLSF). 1In TLLF, the ratio of two direct line
fluorescence signals under the linear fluorescence - source flux

? condition are measured, i.e., the irradiance ratio EF(Asz)/EF(A31)
is measured (EF is the fluorescence irradiance for the wavelength

Az, and Xg,;) and the flame temperature T, is calculated from

5040 v,

| E
‘ ) p\ E.(x,5)
23 23 F'732
log + 6 logi{=—— }+ log

A3 M3 Ep(%31)

where EA is the source (laser) spectral irradiance at the 2 excita-
tion lines Aoz and Az A diagram of the transitions are shown

below

£ €r (p) E;;s € (2y,)

CHIE A CAIEB
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The major assumptions arc that the two cases be done close together
(within 1 us) that steady state, linear operation occurs for each
case, and that state 2 is thermally populated at the flamc temper-
ature. In our case, CASE B and CASE A occurs repetitiQely but
with an %30 ns delay between them. The major assumptions have been
shown to be valid. Calibration of the spectrometric system is
essential here.

In TLSF, the fluorescence irradiance at A32 is measured follow-
ing excitation first at X13(EA13) and then at XZS(EAZS) delayed
by %30 ns. In this case, saturation must occur and so the spatial-
temporal characteristics of the laser beam must be monitored so that
measuremcnts only occur in the saturation domain. In addition, the

laser spot size for E and E excitation must be the same. The

13 23
flame temperature, Tf, is then calculated from

Tf - 4868
F
31
log 1>3 14 0.125
Fis1
2+3
here EF is the fluorescence irradiance at A31 with excitation at
3+1
1+3
A and E is the fluorescence irradiance at A with excitation
13 F3+1 31
2+3

at A,4. Here it is not necessary to calibrate in the spectrometer‘

but only to know the relative fluorescence signal levels.

s —r
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The experimental system for these mecasurcments is shown
in a schematic fashion in Figure 3. Several experimental flame
temperatures as measured by the TLSF and TLLF methods are given in
Table I; in Table X, literature values are also given for the same

flames. The spatial and temporal resolution of the TLSF and TLLF

temperature values is 1.5 mm x 0.5 mm x 3 mm and 30 ns respectively, which

falls within the required resolution for flame modeling.

The experimental system is currently being interfaced via
CAMAC units to our PDP 11/34 minicomputer to allow spatial flame
temperature measurements of a variety of flames and plasmas. A
manual horizontalitemperature profile of our ICP is shown in Figure
4. The major limitations to flame temperaturc measurements by the
much simpler and more precise (better SNR) method is the dye laser
source spectral irradiance. Currently, the TLSF method can be used
with non-quenching flames (Hz—based) and plasmas (inductively coupled
Ar plasma), but with quenching flames (hydrocarbon based) because
of the low quantum efficiencies of the probes (In, Ga, Tl, Pb, etc.),
the saturation spectral irradiance is so large as to prevent sat-
uration with our Molectron UY—14-DL—14 Dye Laser system. Calculations
show that the Lambda Physik excimer laser-Lambda Physik dye laser
system will "saturate" In, Ga, Tl, Pb, etc., in hydrocarbon based
flames. We hope sufficient funds will be available in the near
future to purchase the Lambda Physik excimer lascr (+$35,000.);
the other lascr items are already available in our laboratory.

Other related studies in progresé include the mecasurement of
atom quantum efficiencies and total concentrations (m's) of atoms
and molecules in flames (sec Table II). The experimentai equipment

for these studics is shown in Figure 5. Some typical results via
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several methods are shown in Table XI and Table XII (papers describ-
ing these approaches will be forwarded to AFOSR within a month),.
In addition to the flame temperature measurement methods, TLLF

and TLSF with elemental probes (In, Ga, T1l, Pb, etc.). We are

also developing similar TLLF and particularly TLSF methods with
native flame species (e.g., OH, CH, CZ’ etc.). Flame fluorescence
(laser induced) background spectra have been measured; these results
indicate the potential use of TLSF and TLLF for temperature

measurements (several papers concerning flame fluorescence spectra

will be sent to AFOSR within a month).
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